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A microscopic derivation of the generalized Langevin equation for arbitrary 
powers of the momentum of an impurity in a harmonic chain is presented. 
As a direct consequence of the Gaussian character of the conditional 
momentum distribution function, nonlinear momentum coupling effects are 
absent for this system and the Langevin equation takes on a particularly 
simple form. The kernels which characterize the decay of higher powers of 
the impurity momentum depend on the ratio of the masses of the impurity 
and bath particles, in contrast to the situation for the momentum Langevin 
equation for this system. The simplicity of the harmonic chain dynamics is 
exploited in order to investigate several features of the relaxation, such as 
the factorization approximation for time-dependent correlation functions 
and the decay of the kinetic energy autocorrelation function. 
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1. I N T R O D U C T I O N  

In  the  pas t  the  s tudy  o f  the  B r o w n i a n  m o t i o n  o f  an  impur i t y  par t ic le  sus- 

p e n d e d  in a f luid has  re l ied heav i ly  u p o n  a p h e n o m e n o l o g i c a l  a p p r o a c h .  (1) 
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More recently, however, attempts have been made to derive and understand 
the limitations of the phenomenological equations by adopting a molecular 
viewpoint. (2-4~ Unfortunately, due to the complex nature of the motion of the 
bath in which the impurity (B) particle is suspended, microscopic derivations 
cannot proceed very far without making some important assumptions con- 
cerning the dynamics of the B-particle motion relative to that of the bath. 
Typically, one assumes that the friction kernel, which characterizes the decay 
of the B-particle momentum, decays on a time scale which is short compared 
to that of the B-particle motion. The disparity between these time scales is 
gauged by the mass ratio, A 2 = m/M, where m is the mass of a bath particle 
and M is the mass of the B particle. In general, for fluid systems, such an 
assumption is not justified and the reduction of the microscopic equations to 
the phenomenological form must be made with caution. (5~ 

In this article we consider several aspects of the microscopic approach 
to the treatment of Brownian motion for an impurity in a harmonic chain. 
The relative simplicity of the bath dynamics permits an explicit test of many 
assumptions which are made in the treatment of this problem for fluids. 
From previous work on this problem (6) it might appear that the harmonic 
chain will not exhibit many of the features which are of central importance 
in the study of this problem for fluids. For example, it is known that for the 
harmonic chain the generalized Langevin equation for the B-particle momen- 
tum takes the form 

f l  z/3 ', ~/2 . 
dP(t)_act M1 dtl Ko(h)P(t- h) + [-~) Fo(t) (1) 

where Ko(t) is a correlation function of the random force Fo(t) for the B 
particle fixed in the fluid. Hence, Ko(t) is independent of the mass ratio, in 
contrast to the general case. 

However, as we will show in Section 3, the analog of Eq. (1) for higher 
powers of the B-particle momentum does not assume such a simple form; 
instead we find 

f l  / /3 \1/3  + dH,(P,t)at - M1 dtl if2j,(tl)gj(P, t - t 0 + [-~) Fj (t) (2) 

In Eq. (2), Hi(P) is a member of an orthogonal set of polynomials of the 
B-particle momentum, Fj+(t) is the corresponding random force, and 
if2jj(t) is a friction kernel. For  the harmonic chain the friction kernels are 
just the mode coupling terms introduced in our earlier studies of Brownian 
motion, and since no off-diagonal terms appear in Eq. (2), the friction 
coefficients do not contain any long-lived components due to nonlinear 
B-particle momentum coupling. <7) However, Fj+(t) does not reduce to Fo(t) 
and as a consequence iDj~(t) is A dependent and has many features in common 
with the friction coefficients for fluids. Although many-particle collective 
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properties for the harmonic chain are quite different from those of fluids, 
single-particle properties do exhibit similar qualitative features. (8~ A study of 
the Langevin equations which govern the relaxation of higher powers of the 
B-particle momentum is also of interest for this system since simple extensions 
of usual approaches may not yield correct results. For example, the use of a 
retarded Fokker-Planck equation correctly yields the momentum correlation 
function but not the kinetic energy correlation function. (9~ 

Frequently, the mass ratio t 2 is used as an expansion parameter for 
various dynamical quantities. However, the only proof (3~ of the existence of 
such an expansion rests upon the assumed validity of factorization properties 
of time-dependent correlation functions. Since exact results are obtainable 
for even somewhat complex correlation functions for the harmonic chain, it 
is possible to test such approximations against exact calculations. These 
calculations are carried out in Section 4. Although in the present work the 
discussion of factorization will be couched within the framework of the 
Brownian motion problem, the question of the validity of the factorization 
of time-dependent correlation functions is of general interest in many 
relaxation problems, for example, in recent studies of nonlinear mode 
coupling effects (e.g., Ref. 10). 

The particularly simple form of Eq. (2) for the harmonic chain permits 
a direct calculation of the damping kernel i~2:: from the known forms for the 
momentum correlation functions of this system. In Section 5 we exploit this 
connection to investigate the properties of if~22, which characterizes the 
decay of the kinetic energy autocorrelation function. This kernel has a rich 
structure as a function of frequency and mass ratio, in contrast to the force 
correlation function which governs the decay of the B-particle momentum. 

2.  H A R M O N I C  L A T T I C E  M O D E L  

This section is devoted to a review of some of the pertinent information, 
previously obtained, concerning the one-dimensional harmonic lattice model. 
The model system consists of an impurity particle of mass M embedded in a 
one-dimensional chain of identical particles of mass m. Furthermore, it is 
assumed that all of the particles interact merely by nearest-neighbor harmonic 
forces. In the present work the restriction M t> m will also be imposed. The 
Hamiltonian for the total system is given by 

po  2 ~ p:2 o~j~=~ c~ 
H = ~ +  ~-~+ ~ ( x : -  x:+l) 2 + ~ [ ( X o -  xl) 2 + (Xo- xN) 21 

t = 1  

_ _  p o  2 

= a--~ + Ho  (3) 
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where xj is the displacement of thej th  particle from its equilibrium position, 
ps is its momentum, and a = rncoo2/4, with ~o the fundamental lattice 
frequency. It will be convenient for our subsequent discussions to introduce a 
scaled dimensionless momentum variable, 

P = A(fl/m)l"~po, where fi = (kBT) 1 

The Liouville operator for this system may be written as 

iL = iLo + AiL~ = iLo + A P ~ + F - ~  (4) 

where Fis the force on the impurity (B) particle and Lo is the Liouville operator 
for the bath in the field of the fixed B particle. 

Two quantities of interest for this system, the time-dependent conditional 
momentum distribution function and momentum autocorrelation function 
(acf) of the B particle, have been obtained by Rubin. (1~) He found that the 
B-particle conditional momentum distribution is Gaussian and may be 
expressed in terms of the normalized momentum acf ~(t) = (P(OP) (the 
angle brackets denote a full system equilibrium average) as 

f (P ' ,  P, t) = {2~[1 - rr(t)2]) -z!2 exp 
[ ; ,  _ p ~ ( t ) ]  ~ 

211 - ~ - ( t y ]  
(5) 

Rubin also obtained an expression for Tr(t) in terms of a contour integral. A 
somewhat more tractable form for the B-particle momentum acf was found 
by Kashiwamura and several other investigators, (~2) 

T r ( t )  = J o ( o J o t )  - 2(/~ - 1) ~ (1 - 2#)~-lJ2,~(co0t) (6) 

In Eq. (6), J~ is an nth-order Bessel function and t~ = A2- 
In the general case of a Brownian motion problem (e.g., a B particle 

suspended in a fluid) exact expressions for the momentum distribution func- 
tion and momentum acf of the B particle have not been obtained. The usual 
procedure employed extensively in the past has consisted in utilizing projection 
operator techniques to obtain an exact relationship between the B-particle 
momentum acf and the random force acf. In the following section we consider 
the generalized Langevin equation for an arbitrary power of the B-particle 
momentum. In the course of the calculation we will discuss the relation of our 
results to previous investigations of Brownian motion in fluids and the 
harmonic chain. 
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3, GENERALIZED LANGEVIN EQUATION FOR POWERS OF 
THE B-PARTICLE M O M E N T U M  

In this section we derive generalized Langevin equations for a set of 
orthogonal polynomials constructed from powers of the B-particle momen- 
tum. The discussion is closely related to our earlier study <5,7) of nonlinear 
momentum coupling effects on B-particle motion in fluids. For fluids such 
nonlinear coupling effects are responsible for the slow decay of the kernel 
which characterizes the decay of the B-particle momentum in Mori's formula- 
tion (4) of this problem. However, by making use of the Gaussian property 
of the harmonic chain, it is easy to demonstrate that such nonlinear momen- 
tum coupling effects are absent. The absence of these nonlinear coupling 
terms leads to an especially simple form for the generalized Langevin equa- 
tion. In the latter part of this section we will study several general features of 
the kernels which enter in the Langevin equations. 

We begin by deriving a generalized Langevin equation for an arbitrary 
power of the B-particle momentum. It is convenient to work with an orthog- 
onal set of momentum functions Hi(P), 

Ha(P ) = [exp( +P2/2 ) ] ( -~ /~Pyexp(  -p2 /2 ) ; / / 1  = P , / / 2  = p2 _ 1 (7) 

As in earlier investigations of Brownian motion, we can derive a generalized 
Langevin equation by applying the operator identity 

f2 exp[(A + B)t] = exp(At) + dtl {exp[A(t - h)]}B exp(A + B)h (8) 

with A = iL, B = - ~ iL ,  and ~ a projection operator which averages over an 
equilibrium bath distribution, 

= [exp(-[3Ho)]/~ d x  N dp N exp(-fiHo) pb 

[- dxN dP N Pb (9 - ((~)b (9) 
d 

to 

dH~(P) h[fl]I/2FOHJ(P ) . / f l \1,2 
dt = ~m] ~p = Jh(m ) FHj_I(P)  (10) 

in order to obtain 

= --  dh  {exp[iL(t - h)]} _ p K+(tl)  ~Hj(P) 
dt m OP 

+ A(~) l/2F,+(t) (11) 

The random force Fj+(t) is defined by 

Fj+ (t) = e'~-a')UF aHj(P)/OP (12) 
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and K + (t) is the force correlation function introduced by Mazur and Oppen- 
heim, 

K + (t) = f i (Fg + (t)}b = fl(Fe ~(: -~)rtr}b (13) 

We note that this correlation " funct ion"  is an operator in momentum space. 
Equation (11) can be used to derive an equation of motion for the 

correlation function of powers of the B-particle momentum. As in our earlier 
studies of nonlinear momentum coupling effects, we carry out the calculation 
in two steps; first we average Eq. (11) over an equilibrium bath distribution 
to obtain 

= -- dh fY(t - q)  - P K+(t:)  Hi(P) (14) 
dt  m 

where we have used the fact that ~ F s + ( t ) =  0. The propagator .~( t )=  
(e*U}b is related to the conditional momentum distribution in Eq. (6) by 

~Hs(P,  t) = (Hs(P, t)}b = f AP' Hj(P' ) f (P ' ,  P, t) 

= f aP' Hj(P')fY(t) ~(P - P')  = ~(t)Hs(P ) (15) 

In many of the subsequent calculations it will prove convenient to 
introduce a field theory notation frequently used in quantum mechanics. To 
this end we define a set of basis vectors 

us(P) = ~(P):/2Hs(P) - l J} (16) 

<ilk} = j !  ~jk (17) 

and introduce creation C and destruction D operators on these vectors (v':3) 

P 0 P 0 
C = -2 - ~-fi' D = 2 + --0P (18) 

with properties 

CJj} = [j + 1}, D[j} = J t J -  1} (19) 

Transformed operators will be denoted by a tilde, 

o(P) = 6 (p) : /%(p)6(p) -  :/2 (20) 

In Eqs. (16) and (20), 4,(P) = (2~)- 1/2 exp(-P~/2)  is a normalized M axwellian 
distribution function. In this notation Eq. (14) takes the form 

t 

dlj ,  t}/dt = - ( A 2 / m )  ~ dr1 # ( t -  q)CF;+(t: )D[j)  (21) 
Jo 
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where 
[j, t> = ~( t ) l j )  (22) 

If we make use of the fact that the [j> form a complete set 

IZ>(Z!)-l<Zl = 1 (23) 
t = 0  

and Eq. (19), we can write Eq. (21) as 

dlj ,  t>/dt = - dtl  [l; t - t l>if~j(tt) (24) 
t = l  

where we have defined the coupling factors 

if~,j(t,) = ()t2/m)<l[CR + (t l)Dlj>/l!  (25) 

The coupled equations for the momentum correlation functions are easily 
obtained by taking the scalar product with lk>, 

drr~j(t)/dt = - dh  rrk,(t - h)if~tj(tl) (26) 
1 = 1  

where 
rrk,(t) = <klj; t>/k! (27) 

and is related to the conditional probability by 

rrks(t ) = f dP r  

f dP ~a(P)He(P) f dP'  H j ( P ' ) f ( P ' , P ,  t) (28) 

Making use of the expression forf(P ' ,  P, t) given in Section 2 and performing 
the integrals, one obtains the familiar consequence of a Gaussian conditional 
distribution, 

rrks(t) = rrsj(t) 8kj = ~r(t) j 8kj (29) 
and hence 

drrz(t)/dt = - dh  %j(t - t l ) i f2z(h)  (30) 

As a direct consequence of the Gaussian character of the conditional dis- 
tribution, the equations of motion for the various correlation functions 
decouple, but are non-Markovian. 

An important consequence of the decoupling of the set of relaxation 
equations is the elimination of slowly decaying components from the jth- 
order kernel. For example, if we consider the case where j = 1 (decay of the 
momentum autocorrelation function), we have demonstrated previously (s,7~ 
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that in the general case the Mori kernel [see Eq. (A.2)] has a slowly decaying 
component stemming from the coupling of the B-particle momentum to 
higher powers of the B-particle momentum. However, since such coupling 
is absent in the harmonic chain, any residual, slowly decaying terms which 
may appear in the force kernels must be attributed to bath effects. 

Equation (30) also implies the diagonal property 

if2k:(t) = if2z(t) ~k: (3t) 

and it follows that Eq. (11) can be written in the generalized Langevin form 4 

dH:(P, t)/dt = - dr1 if2z(tl)H:(P, t - h)  + )t(fi/rn)~:2F:+(t) (32) 

Equation (31) also leads to the conclusion that the Mori and Mazur-  
Oppenheim treatments of the harmonic chain are equivalent (see Appendix A). 

We also note that although for several exactly soluble master equation 
models (e.g., see Ref. 14) one can show that the analog of if2k:(tl) [for these 
models if2k:(tl)oc 3(tl)] is diagonal, the harmonic chain provides the only 
example where such decoupling occurs for if2k:(tl) with the time dependence 
explicitly determined from the microscopic equations of motion of the system. 

We can utilize the explicit specification of time dependence of the 
if2kj(h) to deduce some general properties of (jlE2+(t)[j). Repeated use of 
Eq. (8) with A = iLo and B = ,~(1 - •)iLB leads to 

(jlF2 +(t)lj) = j!  Ko(t) + dtl dt2.., dt2~ 
n =  1 ":0 

x (A2/3/m)~fl(jl(F{exp[iLo(t- h)]}(1 -- ~ )  

x (aC + bD)...(1 - ~) (aC  + bD)[exp(iLotz~)]F)blj) (33) 

where we have written iLs in the form 

iLs = (/3/m)~:2(aC + bD) (34) 

with 

a = O/Oflxo, b = F + (O/eflXo) (35) 

In Eq. (33), Ko(t) is the fixed particle force correlation function, 

Ko(t) = fl(j l(F[exp(iLot)]F)blj)/ j!  = fi(F[exp(iLot)]F)~ (36) 

The correlation function in Eq. (33) may be decomposed into a sum of terms 
containing products of C and D operators. First one may observe that all 
correlation functions in this sum that do not contain an equal number of C 
and D operators vanish. This may be readily demonstrated by making use of 
Eqs. (19) and (17). By making use of the properties of the harmonic chain, one 
can show that 

/3(1 - ~)a[exp(iLot)]F = - ( 1  - ~)Ko(t)  = 0 (37) 

4 See Refs. 18-20 for the alternative Gaussian non-Markovian Fokker-Planck approach. 
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and as a result each term in the expansion in Eq. (33) must begin with a D 
operator on the extreme right. As an immediate consequence, 

(m/;t2)if211(t) = (ol/~+(t)lo) = Ko(t) (38) 

since DI0 ) = 0. This matrix element characterizes the decay of  the momentum 
correlation function and Eq. (38) is just the result obtained earlier by Deutch 
and Silbey. ~6~ No such simple form results for the matrix elements that 
characterize the decay of the higher powers of  the B-particle momentum. 5 
We illustrate this by considering (1 [K+(t)] 1). 

I t  is easy to show that terms to all orders in A contribute but that each 
term contains only contributions that come from a strict alternation of C and 
D operators, C D C D . . .  CD.  It is clear that, starting from the right in a typical 
term, we must begin with D because of Eq. (37) and follow this with C since 
D 2 ] 1)  = 0. I f  we assume that the next contribution comes from a C operator, 
direct calculation using Eq. (37) leads to 

(1 - ~ ) a ( -  [iLo(t2,_ 2 - t2~)]}F(F[exp(iLot2,_ z)]F)b 

-- [exp(iLot2~_2)]F(F{exp[iLo(t2,_l  - t2~)]}F)o) = 0 (39) 

Hence two consecutive C operators produce a zero contribution and C must 
be followed by D. By the repetitive use of  such arguments one may easily 
show that any term must assume the alternating C D  form or else its matrix 
element will vanish, and thus for (m/2A2)if222(t) = ( I l K  + (011) 

(1]/~+(t)ll> = Ko(t) + dtz dt2.., dt2~(h2fi/m) ~ 
7t= l ~0 

x p (F{exp[ iLo( t  - tl)]}(1 - ~ )  

x a{exp[iLo(t~ - t2)]}(1 - ~)b. . . (1 - ~)b[exp(iLot2~)g)~ 
(4o) 

where we have used the fact that C D . . . C D I 1  ~ = I1). For the higher order 
matrix elements no simple pattern for the C and D operators results. Hence 
we see that even for the harmonic lattice the higher order matrix elements 
have a much richer structure than (0l/~'+(t)10), and therefore we can investi- 
gate many properties of such matrix elements which are important  in the 
study of Brownian motion in fluids. In the following sections we will study 
the validity for this system of the factorization approximation for time- 
dependent correlation functions as well as several other aspects of  the A 
expansions of /~+ (t). 

5 It is for this reason that Deutch and Silbey were unable to find a corresponding simple 
form for the Fokker-Planck equation. 
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4. FACTORIZAT ION A P P R O X I M A T I O N  FOR T I M E - D E P E N D E N T  
CORRELATION F U N C T I O N S  

As mentioned previously, a knowledge of the properties of the kernel 
K+(t) is essential in any study of Brownian motion. Typically, the existence 
of a A expansion of K+(t) or its matrix elements is assumed, but in one case 
Mazur and Oppenheim t3) were able to prove the validity of such an expansion. 
This proof, however, was based on an assumption concerning the long-time 
behavior of certain correlation functions appearing in the A expansion of 
K+(t). More explicitly, for correlation functions which are governed by fixed 
particle dynamics the factorization approximation states 

(A(tl)[exp(iLot)]B(t2))~ = (A(tl))b(B(t2))~ (41) 

for t > t~, where tb is some characteristic bath relaxation time and tl and tz 
refer to a collection of positive times. If one is interested in the kangevin 
equation for the B-particle momentum, only (0tK+(t)[0) appears and from 
Eq. (38) the factorization approximation need not be considered. However, 
for the Langevin equation for higher powers of the B-particle momentum 
one is faced with the full complexity of the A expansion and the problem is 
very similar to the fluid case. In this section we utilize the simplicity of  the 
harmonic chain dynamics to investigate in more detail the validity of  such an 
approximation. 

From Eq. (33) we can write the operator expansion 

fj r,1.  or ~ R +(t) = Ko(t) + (;t~/m)" dtl | dr2.. . |  dr2. 
r t = l  

x fl(F{exp[iLo(t - h)]}(1 - sY)(aC + bD) 

•  - ~)(aC + bD)[exp(iLotz,)]F)b 

- Ko(t) + ~ a~"K.(t) (42) 
n = l  

For the harmonic chain the expressions for K,(t) simplify considerably by 
making repeated use of Eq. (37) in the form 

(~/~[3Xo){exp[iLo(t, - ty)]}F = - (F~F~)~ (43) 

where we have introduced the fixed particle force notation 

F~ = [exp(iLoh)]F (44) 

We also note that as a consequence of  Eq. (43) [since P(t) is Gaussian, its 
corresponding random force Fo(t)--Eq. (1)--is also Gaussian], 

<FIF2...F2,)~ = ~ (F, Fj>b<g~g,>b... (45) 
a l l  

p a i r s  
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Using Eqs. (43) and (45), it is straightforward to write expressions for the 
K , ( t )  in terms of products of fixed particle force autocorrelation functions. 
Explicit expressions for K~(t)  and K~(t)  are 

fot ~ ~ 

==_ K~,(t)CD (46) 
with 

and 

with 

L( t ,  t~, tz) = - K o ( q ) K o ( t  - t2) - Ko( t )Ko(q  ~ tz) (47) 

K2(t)  = m -~ d h . . .  dt~{M~(t ,  q , . . . ,  t , ) C C D D  

+ M~(t, t~ . . . . .  t , )CZ>CZ)}  

M l ( t ,  tl  .... , t4) 

= Ko( t  - t3)Ko(t l  ~ t4)Ko(t2) + Ko( t  - t~)Ko(tl  - t3)Ko(t2) 

+ Ko( t  - t2)K~(t~)Ko(t2 - t4) + K o ( t ) K o ( h  - ta)KD(t2 -- t4) 

+ Ko( t )K~(h  - t ,)K~(r~ - to) + Ko(t)Ko(t2 - t~)Kv(rz - t3) (49) 

M2(t, tl  ..... tO 

= Ko( t  - t2)Ko(t l  ~ t , )Ko(ta)  + K~(t  - t , ) K o ( h  - t2)Ko(ta) 

+ Ko( t  - t2)KD(t~)Ko(ta - t~) + Kv(t)Ko(t~ - t~)Kv(ta - t4) (50) 

Since the fixed par f fc le  force cor re la t i on  fu~ctio~ is known f~r ~he harmonic 
chain, ~ml 

Ko(t )  = rnwoJl (wot ) / t  (51.) 

the properties of the integrands of the K , ( t )  operators are therefore completely 
specified. We can now u~e these results to lest the validity of lhe factorizatmn 
approximation, We will con~ider K<~(t)  in some detail, From Eq. (42) the 
term proportional to C D  in the expansion of K+(t) is 

(F{exp[iLo(t - t0]}(1 - ~)a{exp[ iLo ( t~  - t2)]}(1 - ~ ) b  exp ( iLo t z )F )b  

(s~) 
which by direct calculation is given in I~q. (47) for the harmonic chain (the 
other terms, i,e., the coefficient~ of  CC,  _DC, and D D ,  vanish for this system). 
The factmization approximation states that this correlation function is zero 
for t - t~ > to, t~ - t2 > to, or t2 > t~ corresponding to the three possible 
breaking points. The restriction of the breaking approximation to positive 
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times also requires that t > t~ t> t2. This inequality is also implied by the 
time integral in Eq. (46). If we assume that the fixed particle force correlation 
function in Eq. (51) decays to zero in a time tb 

Ko(t) ~ O, t > tb (53) 

then it is easy to verify that Eq. (47) exactly satisfies the factorization approxi- 
mation. Similar considerations apply to Eqs. (49) and (50). Thus we see that 
for the harmonic chain the mechanics of the factorization approximation are 
exactly satisfied. 

Although the mechanics of the factorization approximation is exactly 
satisfied for this model, the oscillatory character of the fixed particle force 
correlation function [Eq. (51)] precludes the definition of a well-defined 
relaxation time tb. (We note that a bath relaxation time is also not well 
defined for the fluid case.) Hence, it is useful to examine some of the conse- 
quences of the factorization in more detail. Mazur and Oppenheim have 
demonstrated that as a direct consequence of the factorization approximation, 
K(l~(t) [Eq. (46)] is zero for t > 3tb. For the harmonic chain it is possible to 
compute Kin(t)  explicitly and test this conclusion in more detail. Using 
Eqs. (46), (47), and (51), we can write 

(54) 

and 

_m,oo212 1,  cos ( , -  K(I)(r) ,., 
W ~.1/2 (57) 

where r~ = OJoh. Performing the double time integral (see Appendix B), we 
find 

K(~)(r) = -mo~o~[{Jl(r)/r}{Jo(r ) + 1 ) -  1 

+ { , J o ( - )  + - 

x {rJ0(r ) + �89 - H10")J00")] - J~(r))] (55) 

where Ho(r) and H~(r) are Struve functions. r In Fig. 1 we plot and compare 
the time behavior of Ko(r) and Kr The oscillations in Kr are much 
more pronounced and decay much more slowly than those of Ko(r). Such 
long-time behavior is expected from an examination of the asymptotic forms 
of these functions, 

cos(, - 3~r/4) 
Ko(r) "~ m~ (2) 1/a ~.~2 (56) 



M o m e n t u m  Relaxation of an Impur i ty  in a Harmonic  Chain 439 

0.8 

O.E 

0.4 

0.2 

0 

- 0 . ;  - 

--0.( 

-0.6 - 

0 

I I I I 

I 1 I I 
5 I0 15 20 25 

I;" 

Fig. 1. Comparison of Ko(r) [Eq. (51)] and --K~l)(r) [Eq. (55)]. Results are plotted in 
units of mo~o 2. 

In order to test the conclusion that K(1)(~) ~ 0 for ~- > 3zb, we estimate 
% by the third zero in Ko(r). As can be seen from Fig. 1, the amplitudes of 
the oscillations are small and the infinite-time integral is well approximated 

by f~b Ko(.r) dr (about 2.4~o error). If  we let r* be the ninth zero of K(I>(r) 
(r* > 3rb), then we can compute f~, dr K (1) (T)in order to determine how well 

the conclusions of the breaking approximation are satisfied. Direct calculation 
indicates that this contribution is about 157o of the value of the infinite-time 
integral. 

Hence, in summary, one can conclude that although the mechanics of 
the factorization approximation are exactly satisfied for the harmonic chain, 
because of the oscillatory nature of the solutions and the lack of a well- 
defined relaxation time, the factorization approximation may yield poor 
estimates of the higher correlation functions. [We should also point out that 
if we examine the force correlation function (Fe~LtF)b rather than K + (t), the 
infinite-time integral of the analog of K(1)(t) does not exist. This points out the 
difference between these correlation functions and shows that the full force 
correlation function does not possess a ~ expansion. (3)] In the following section 
we examine some properties of the A expansion of a particular matrix element 
of /~  + (t), 

if229.(t) : (),2/rn)2(1 [/~ + (t) ll > 

which characterizes the decay of the square of the B-particle momentum. 
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5. E N E R G Y  R E L A X A T I O N  IN THE H A R M O N I C  C H A I N  

The results of the previous sections provide an especially convenient 
route to obtain more information about the structure of  the kernels i~Qjj, 
which characterize the decay of the higher powers of the B-particle momen- 
tum. As we mentioned earlier, these higher matrix elements are not equal to 
the fixed particle force correlation function and display a more complex 
behavior as a function of I and t or e (frequency). 

The principal feature o f  our earlier results that permits such a detailed 
study of these higher matrix elements is the fact that the equations of  motion 
decouple. As a result we can simply relate the Laplace transform of i~)jj(t), 

is = dt  e-~t i f2 j j ( t )  

to the momentum correlation functions, which are known for the harmonic 
lattice. This relationship follows directly from the Laplace transform of 
Eq. (30), 

where 
i o ; j ( , )  = [ , ~ j j ( , ) ] - i  - ,  = [ ~ ; ( , ) ] - 1  _ ,  (58)  

~0 ~176 
~rJ(e) = dt  e- ' t~r(t)J (59) 

Although ~r(t) is known explicitly for the harmonic chain [Eq. (6)], the Laplace 
transforms of arbitrary powers of  ~r(t) are difficult to compute. However, a 
fairly detailed study of iO22(e) is possible. This matrix element is of con- 
siderable interest since it characterizes the decay of the kinetic energy of the 
B particle. 6 Also, as noted in Section 3, terms to all orders in A contribute and 
it is in this sense similar to the kernels that appear in the study of B-particle 
motion in fluids. 

It  is well known that under certain conditions it is justifiable to replace 
a frequency-dependent kernel by its zero-frequency limit (Markov approxima- 
tion). Below we examine if2z2(e = 0) and test the appropriateness of the 
Markov approximation for 7r22(t) by comparison with the exact results. The 
kernel if222(e = 0) may be calculated with the aid of  Eqs. (6), (58), and (C.1). 
Some details on the evaluation of the pertinent integrals are given in Appendix 
C; we simply quote the result: 

t~-lif222(1, e = 0) 

rrCOo(1 - 2 t  2) 
= A 2 - (A ~ + 2 t  2 - 1)(1 - 212) -1'2 tan-l[(1 - 212)1/2/12] ' 

t ,_<�89 
1r~Oo(1 - 2 t  2) 

= 12 _ (14 + 212 _ 1)(212 - I)-1/2 tan-,l[(2Z2 - 1)l/z/A2]' 

/~ _> �89 (60) 
6 Specifically, Eq. (30) withj = 2 governs the acf ,r22 of the kinetic energy fluctuation 

pz _ (p2 )  = Ha(P). 
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We have explicitly indicated the A dependence of if222 on the left-hand side of 
Eq. (60). Figure 2 is a plot of the results in Eq. (60). Perhaps the most striking 
feature is the fact that for ~ = 1, if~22(1, 0) = 0 and as a result the Markov 
approximation to the kinetic energy correlation function, 

rr22(t) ~ exp[-  if~22(A, 0)t] (61) 

does not lead to decay. For this special value of A, Eq. (6) reduces to the 
exact result 

~r(t) = So(o~ot) (62) 

and the result i~222(1, 0) = 0 follows directly from the fact that So dt  [Jo(oJot)] 2 

diverges. We note that the B-particle kinetic energy is ergodic for this value of 
/%.(z6) 

Figures 3 and 4 compare the Markov approximation to the decay of 
r~2~(t) --- ~r(t) 2 for various values of A. The Markov approximation provides 
a fair approximation to the exact correlation function except for values of A 
near A = 1, where it must necessarily fail. The Markov approximation of 
course predicts exponential decay, while the exact result is a damped oscilla- 
tory function. However, since ~r22(t) is highly damped so that the magnitude 
of the oscillations is small beyond the first zero, the overall decay is fairly well 
predicted. 

For fluids where very little is known about the structure of the kernels 
that characterize the decay of the B-particle momentum and its powers, 
frequently, as mentioned earlier, the validity of a A expansion is assumed. 
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Fig. 2. if~2=(A, ~ = 0)/tzoJoTr as a f unc t i on  o f  t~ = h 2. The  dashed  line is a plot  o f  the  
a p p r o x i m a t i o n  in  Eq,  (63). 



442 James T. Hynes, Raymond Kapral, and Michael Weinberg 

' I r I ' 1 ~ I 

Lo ~ =0. I 
\ \  

0.8 

0.6 " ~ -  ~ ' - .  

0.4 

05" 

' I ' I ' I ' I 

I.c IJ : 0 . 2  

O.E \ \  

O.E 

0.4 \ \ ~  

0.2 "-.~ . 

2 4 6 8 

Fig. 3. Comparison of Markov approximation ( -  - - )  with the exact result ( - - )  
for 7r22(~-) for/~ = 0.1 and 0.2. 

For  the special case considered above, it is clear f rom Eq. (60) that i~22(A, 0) 
is an analytic function o f  A. The first few terms in the A expansion are 

l~-1i~222(A, 0) = 2~o[1 -- h a +  2~/2! "--] (63) 

and provide an excellent approximat ion for small A (see Fig. 2). 7 
The general behavior o f  i~22(h, ~) as a function o f  E for various values o f  

h is given in Fig. 5. Al though a closed expression for arbitrary A and ~ was 
not  obtained, several special cases which span the range o f  interesting values 
can be explicitly given. For/~ - 0, i~222(0, e) reduces to the fixed particle force 
correlat ion function and we can write 

tz-ai~22(0, c) = 2oJ~2[(~ 2 + wo2) 1/2 + ~]-1 (64) 

In  addition, for both/~ = �89 and/~ : 1, Eq. (6) reduces to simple forms and 
again i~222 can be explicitly computed.  For /~  = �89 we find 

/z- 1i~222(2-1,2, E) = 7rwo[ZJ(x)] -1 _ ~ (65) 
The first term in Eq. (63) is the standard Fokker-Planck predictionJ 9~ 
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where 

4 r r { l _ l  - x  ]1/2 
Jr(x) = 3"x L (1- 2--- -2x) =j {e-u2(1 - 2x) - (1 - 2x)e,/2(1 - 2x)} 

(66) 

with x = 4w0=/(&oo2 + ~2), and P1/2 and P- l /2  are half-order Legendre 
functions3 TM. For  ff = 1 we find 

/~-1is ,) = ~r('2 + 4~~176 
2K[2~o0/(~ 2 + 4Wo2)1~2] - ~ (67) 

where N~ is a complete elliptical integral of  the first kind. ~7) The results for 
other values of  A in Fig. 5 were computed numerically. The plots indicate that  
for small values oftz (ff < �89 if222(;~, E) is a monotonically decreasing function 
of~, while for larger values offf  the function exhibits a maximum. A maximum 
for large values of /z  is not  unexpected since, as shown earlier, if222(1 , 0) is 
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Fig. 5. if~22(A, z)/tscoo as a function of the reduced frequency z = e/co0 for several values 
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zero. The kernel is well behaved for all values of A and e investigated but it is 
difficult to determine if the function is analytic in A for finite frequency. 8 

All of the above results reflect only a portion of the full complexity of 
/~+(t) since, as demonstrated in Section 3, the matrix elements of K+(t) 
depend only on selected terms in the A expansion of this operator. The opera- 
tor itself is much more difficult to examine than its matrix elements (see 
Section 4). However, the quantities of direct physical interest are the matrix 
elements of K + (t) since these characterize the decays of the various powers of 
the B-particle momentum. 

APPENDIX A 

In this appendix we show that the Mori generalized Langevin equation (4) 
for the B-particle momentum function, Hi(P), reduces to Eq. (11) for the 
harmonic chain. Mori's generalized Langevin equation can be obtained by 
the procedure specified in Eqs. (8)-(11) if we select A = iL and B =@miL, 
where the projection operator @.m is defined by 

~m = Hj(P)(j!)- I(H)(P)(9) 

= Hj(P)(j!)-I f dP ~(P)Hj(P)QY)~ (A. 1) 

8 Fo r  A 2 < 1, analyt ici ty ha s  been proved  by M. K u m m e r  (Toledo Univ.) .  
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The familiar result is 

- dt~ <FjFj'~(tO)(j!)-~Hj(P, t -  t 0 + h 
dt m 

1/2 

F#(0 

(A.2) 
where the Mori  r a n d o m  force is defined by 

Fire(t) = {exp[i(1 - ~m)Lt]}Fj =- {exp[i(1 - @.m)Lt]}F OHj(P) (A.3) 
0P 

To establish the equivalence, we first show that  Fj+(t) = F i r e ( t )  [Fi+(t) is 
defined in Eq. (12)] for  the harmonic  chain. First  we note that  the project ion 
opera to r  in Eq. (A.1) can be writ ten as 

~r~ = ~ . ~  (1 .4)  

where 

= Hj(e ) ( j~ ) - I  f d e  ~(P)Hj(P)  (1 .5)  

is a project ion opera to r  in m o m e n t u m  space. By making  use of  the identity 

J; exp[(A + B)t] = exp(At) + dtl {exp[(A + B)(t - tl)]}B exp(Atl)  (A.6) 

with A = i(1 - ~ ) L  and B = i(1 - ~m)L - i(1 - ~ ) L  = h(1 - @)NiLB, 
we obta in  

Fire(t) = f j+( t )  -F A dt 1 {exp[i(1 - @:~)L(t - h)]} 

x (1 - ~ . )  ~ -  P K+(h)  Hi(P) (A.7) 

I f  we write (1 - @) as 

(1 - ~,) = Z ,  m(e)(~ ~)-1 f de ~(e)m(e)  (A.8) 

and insert in Eq. (A.7), we obtain  

2 f' Fire(t) = Ej+(t) + A dtl {exp[i(1 - ~.m)L(t - tl)l}Hk(P ) 
\m]  kejJ0 

( k -  l [ / ( + ( t 0 [ j -  1} 
x ( k -  1)! (A.9) 

F r o m  Eq. (31) and  the fact  tha t  the sum is restricted to k # j it follows tha t  

F#m(t) = rj+(t)  (A.10) 
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Hence as a direct consequence of the absence of nonlinear momentum mode 
coupling for this model, the Mori and Mazur-Oppenheim random forces are 
equal. It follows immediately that Eqs. (A.2) and (11) are identical. Equation 
(A.2) reduces to 

f2 dHj(P, t) " h2fl dq  Hi(P, t - t~) ( j  - l lR+(tOlJ - 1) 
dt = - J  --~ (j  - 1)! 

+ a &+(t) (A.1t) 

or using the definition of i~jj in Eq. (25), we can write 

dHj(P,dt t) .f~ /~\~/2  - -o dq  if2jj(P, tt)Hj(P, t - h) + h [ m  ) Fj+(t) (A.12) 

which is identical to Eq. (32). 

A P P E N D I X  B 

The purpose of this appendix is to derive an explicit expression for 
K(~>(t). We use Eq. (54) to define A(r) and B(r) as 

K(~'(r) = - meooZ[A(r) + B(r)] (B.1) 

with 

and 

f] s J1(~1)J1(~- ~) 
(B.2) 

f~ ~i dr2 Ji(~I ~(~) = J l ( - )  d ~  - ~ )  (B.3) 
T "/'1 -- T2 

We first consider B(r). Equation (B.3) can be integrated by parts to yield 

B(r) = Jl(r) f ]  dy J~(y)y Jz(_(_r),r Oo (" dy J~(y) (B.4) 

where y = % - r2. The recursion relation 

y dJ~(y)/dy = yJ~_ z(y) - nJ~(y) (B.5) 

may be used in the first integral in (]3.4); thereafter both integrations can be 
performed. The final expression for B(r) is 

S(,)  = J~(r + b~-[Sl(-)Ho(~') - &(r162 

- J~(r)} - [J~(r)/r][1 - Jo(r)] (]3.6) 
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In Eq. (B.6), Ho and H,  are Struve functions. A(r) may be readily evaluated 
by means of the following decomposition: 

A(r) = dr, 
7" 1 " 7 " -  T 2 

+ dr, drz -4 -- r r, 
~ g  

=- A,(r) + A2(r) (B.7) 

After transforming variables it is easy to see that 

= {rJo(r) + �89 - Jo(r)Hl(r)] - J,(r)} 2 (B.8) 

Similarly, A2(r) may be expressed as 

& ( -O d-~ l & (.~ l ) ,1 = - (B.9) ~-, y 

Once again employing Eq. (B.5), we find 

Az(r) = J2(r) + Jo(r) - 1 (B.10) 

Combining Eqs. (B.6), (B.8), and (B.10) and using the recursion relation 

YJ,~-I(Y) + YJ,~+I(Y) = 2nJn(y) (B.11) 

we obtain the result given in Eq. (55). 

A P P E N D I X  C 

We outline here the evaluation of the integrals which are required to 
obtain Eq. (60). The expression for ~(t) [Eq. (6)] can also be written in integral 
form(" 2) 

2/. (=f2 cos(mot sin 0) cos 2 0 
7 g ( t )  = - -  r dO/~ 2 + (1 ~ f~ )  s ~ ?  (C.1) 

Yr ~ 0 

Making use of Eqs. (6), (58), and (C.1), we obtain 

i~=(A, 0) = [~rZ(e = 0)] -1 (C.2) 
with 

~r2(e = 0) = 2 / . [ f  o - r r  dtJ~176 f ='2~o dO t* 2c~176176176 (1 --- ~ 2  

_ f [  ao cos( oO(cos ; - a~ - o 



448 James T. Hynes, Raymond Kapral, and Michae~ Weinberg 

I f  the o rder  o f  in tegra t ions  is in te rchanged  and  the t ime integral  is pe r fo rmed ,  
we ob ta in  

~r2(E = O) = 21 .  f~/2 dO cos 0 41.(1. - 1) 
7r~ Jo 1.2 + (1 - 21*)sin 2 0 ~r~o o 

f'~/= dO cos 0 ~ [cos(2pO)](1 - 2/x) p-1 (C.4) 
X~o 1.= + ~  Z ~ } s i n  2 0 ~ 1  

Wi th  the aid o f  the ident i ty  

cos 5 - r cos(/3 - ,~) 
~=0 ypc~ + /3 )  = 1 - 2 y c o s ~  + y 2 (C.5) 

Eq. (C.3) can be t r ans fo rmed  to a t ractable  fo rm 

7r=(e = O) = /1 + 1~. + 13 (C.6) 

with 

21. (=12 dO cos 0 
/1 (C.7) 

~ro~0 !~o 1.2 + (1 - 21*)sin 2 0 

41.(1. - 1) 
ql-Lo o 

f =/2 dO cos 0 cos 20 
X 

~o [1.2 + (1 - 21.) sin 2 0][1 - 2(I  - 2/,) cos 20 + (1 - 21.) 2 ] 

/ ~  = 

a nd  

1 3 =  

(c.s) 

(1  - 2 1 . ) 4 1 . ( 1 .  - 1 )  

7"/'LO 0 

~o "/2 dO cos 0 
[1.2 + (1 - 21.) sin 2 0][1 - 2(1 - 21.) cos 20 + (1 - 2t,) 2] 

(C.9) 

The  in tegra t ions  in Eqs. (C.7)-(C.9)  can readi ly be pe r fo rmed  to ob ta in  
Eq. (60). 
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